Cu₃(PO₄)₂ · H₂O: Synthese und Kristallstruktur

H. EFFENBERGER

Institut für Mineralogie und Kristallographie der Universität Wien, Dr. Karl-Lueger-Ring 1, A-1010 Wien, Österreich, Austria

Received July 6, 1984; in revised form October 2, 1984

Crystals of Cu₃(PO₄)₂ · H₂O were synthesized under hydrothermal conditions. They crystallize in space group C2/c with a = 18.05(2), b = 6.20(1), c = 12.26(2) Å, $\beta = 105.50(5)^{\circ}$ (Z = 8). The crystal structure was solved from 1834 independent two-circle diffractometer X-ray data by direct methods and Fourier summations and was refined by full-matrix least-squares techniques to R = 0.033. The copper atoms are [4 + 2], [4 + 1], and [4] coordinated. These coordination polyhedra are connected by oxygen atom corners and O–O edges building a two-dimensional sheet-like framework parallel [100]. Linking these frameworks with $[PO_4]^{3-}$ groups and hydrogen bonds results in a three-dimensional network. © 1985 Academic Press, Inc.

Einleitung

Bei der Synthese von Cu(II)-PO₄-Verbindungen (1) gelang die Herstellung des bisher nicht beschriebenen $Cu_3(PO_4)_2$ · H₂O in für eine Strukturuntersuchung geeigneten Kristallen. Für die Synthese des Trihydrates des Verbindungstyps Trikupfer(II)-diphosphat sind hingegen in der Literatur zahlreiche Verfahren angeführt (vgl. (2)). Für die nicht hydratisierte Verbindung $Cu_3(PO_4)_2$ gelang Shoemaker *et al.* (3) die Lösung der Kristallstruktur. Zur Belegung der chemischen Formel der hier vorgestellten Verbindung sowie zum Vergleich mit der Kristallstruktur des $Cu_3(PO_4)_2$ scheint die Strukturuntersuchung von Interesse.

Synthese

Die Synthese von Kristallen des $Cu_3(PO_4)_2 \cdot H_2O$ gelang unter Hydrother-0022-4596/85 \$3.00

Copyright © 1985 by Academic Press, Inc.

All rights of reproduction in any form reserved.

malbedingungen. Die für die Strukturuntersuchung verwendeten Kristalle wurden wie folgt hergestellt: 2 g Cu(NO₃)₂ \cdot 3H₂O wurden zusammen mit einigen Stücken dünnen Kupferblechs (~ 0.5 g), 1 ml H₃PO₄ und 2 ml H₂O in einer mit "Teflon" ausgekleideten Stahlbombe über 48 Stunden auf 220°C erhitzt; bei einem Fassungsvermögen von ~6.5 cm³ beträgt der Füllungsgrad etwa 80%. Als Druck stellte sich der Sättigungsdampfdruck der Komponenten ein. Nach einer Abkühlzeit von ungefähr 10 Stunden waren Kristalle des monoklinen Cu₂ (NO₃)(OH)₃ und untergeordnet solche von $Cu_3(PO_4)_2 \cdot H_2O$ entstanden. Letztere sind hellgrün gefärbt und stets plättchenförmig nach {100} ausgebildet. Sie erreichen eine Größe bis zu 0,4 mm, die Dicke beträgt jedoch stets weniger als 0,1 mm. Das Auftreten der beiden Phasen Cu₂(NO₃)(OH)₃ (stets in der monoklinen Modifikation) und $Cu_3(PO_4)_2 \cdot H_2O$ konnte auch beobachtet werden, wenn statt des Kupferblechs CuO bzw. Cu₂O als Ausgangssubstanz verwendet wurde.

 $Cu_3(PO_4)_2 \cdot H_2O$ entsteht weiterhin neben (mengenmäßig allerdings weitaus überwiegendem) $Cu_3(PO_4)_2$, wenn anstelle des $Cu(NO_3)_2 \cdot 3H_2O$ bei obiger Synthese frisch gefällter Cu(II)-PO₄-Niederschlag eingesetzt wird. Dieser konnte aus einer Cu(NO₃)₂-Lösung durch Fällung mit (NH₄)₂HPO₄ dargestellt werden. Er besteht im wesentlichen aus einem Gemenge von feinkristallinem $Cu_3(PO_4)_2 \cdot 3H_2O$ und Cu_2 (PO₄)(OH). Für die Synthese von Kristallen des $Cu_3(PO_4)_2$ vgl. auch (3). Zu bemerken ist, daß hier ein Verfahren zur Synthese bei wesentlich geringeren Temperatur- und Druckbedingungen als in (3)angegeben werden kann. Das $Cu_3(PO_4)_2$ bildet bei dem hier beschriebenen Syntheseansatz flächenreiche Kristalle bis zu einer Größe von 1 mm.

Die Bestimmung der einzelnen Phasen erfolgte mittels Einkristall-Weissenbergaufnahmen, soweit die Größe und Ausbildung der Kristalle dies zuließ, sonst mit der Röntgenpulvermethode.

Experimentelles und Bestimmung der Kristallstruktur

Der für die röntgenographischen Untersuchungen verwendete Kristall hatte eine Größe von $0.05 \times 0.32 \times 0.18$ mm³. Die Bestimmung der Gittermetrik sowie der Auslöschungseinheit erfolgte mittels Weissenberg-Filmaufnahmen bei Drehung um die Zonen [010] und [001]. Die Laue-Symmetrie ist 2/m; die Reflexe (*hkl*) sind nur mit h + k = 2n, die Reflexe (*hkl*) sind nur mit h + k = 2n, die Reflexe (*hol*) nur mit *h* und *l* = 2n beobachtet worden. Als Raumgruppen sind somit Cc und C2/c möglich; durch die Strukturbestimmung konnte das Vor-

 TABELLE I

 Strukturparameter für Cu3(PO4)2 · H2O4

ATF = exp $\left(-\sum_{i=1}^{3}\sum_{j=1}^{3}h_{i}h_{j}\beta_{ij}\right), B_{equ} = \frac{4}{3}\left(\sum_{i=1}^{3}\beta_{ii}/a_{i}^{*2}\right)$										
Atom	x	у	z	$m{eta}_{11}$	β_{22}	β_{33}	$oldsymbol{eta}_{12}$	$oldsymbol{eta}_{13}$	β_{23}	$egin{array}{c} B_{ m equ}\ B_{ m iso} \end{array}$
Cu(1)	0,24988(4)	-0,08830(9)	0,09185(5)	161(2)	315(13)	118(3)	-77(4)	88(2)	-55(5)	0,96
Cu(2)	0,11297(3)	0,09490(10)	0,18322(5)	34(1)	652(14)	178(4)	40(4)	27(2)	161(5)	0,80
Cu(3)	0,09216(3)	0,68230(9)	0,36070(5)	43(2)	272(12)	213(4)	4(3)	31(2)	29(5)	0,70
P(1)	0,24552(6)	0,39403(18)	0,14236(9)	23(3)	304(22)	70(6)	-11(6)	6(3)	14(9)	0,39
P(2)	0,07168(6)	0,17601(18)	0,40291(9)	30(3)	354(23)	83(6)	-9(6)	11(3)	6(9)	0,46
O(11)	0,2533(2)	0,5942(5)	0,0713(3)	5(1)	18(6)	10(2)	-2(2)	1(1)	5(3)	0,50
O(12)	0,1611(2)	0,3326(6)	0,1208(3)	3(1)	61(8)	21(2)	-5(2)	2(1)	11(3)	0,85
O(13)	0,2845(2)	0,4481(5)	0,2691(3)	6(1)	51(7)	8(2)	-4(2)	1(1)	-4(3)	0,64
O(14)	0,2937(2)	0,2049(5)	0,1113(3)	5(1)	30(7)	13(2)	0(2)	1(1)	-6(3)	0,60
O(21)	0,1110(2)	0,3757(5)	0,3663(3)	5(1)	14(6)	21(2)	0(2)	2(1)	1(3)	0,66
O(22)	0,0830(2)	-0,0123(5)	0,3231(3)	6(1)	19(7)	14(2)	-1(2)	3(1)	-2(3)	0,59
O(23)	-0,0152(2)	0,2283(6)	0,3825(3)	4(1)	57(8)	22(2)	-1(2)	2(1)	-10(3)	0,90
O(24)	0,1065(2)	0,1169(6)	0,5271(3)	10(1)	92(9)	10(2)	0(2)	0(1)	9(3)	1,10
Ow	0,0198(2)	0,3511(6)	0,6438(3)	7(1)	56(8)	26(2)	1(2)	7(1)	-1(3)	1,00
H(1)	0,024(4)	0,481(12)	0,636(6)							-0,7(12)
H(2)	0,032(4)	0,293(12)	0,599(6)							-0,8(11)

^{*a*} Standardabweichungen in Einheiten der letzten Stellen in Klammern. Die β_{ij} der Atome Cu und P sind mit 10⁻⁵ zu multiplizieren, die der O-Atome mit 10⁻⁴.

liegen der Raumgruppe $C2/c - C_{2h}^6$ belegt werden. Die Gitterparameter sind: a =18,05(2) Å, b = 6,20(1) Å, c = 12,26(2) Å, und $\beta =$ 105,50(5)°, V = 1322,8 Å³, Z =8{Cu₃(PO₄)₂ · H₂O}, $\rho_{\text{theor}} =$ 4,00 g cm⁻³.

Die Röntgenbeugungsintensitäten von insgesamt 4051 Reflexen $(\pm hk \pm l)$ wurden auf einem automatischen Zweikreisdif-Stoe-Stadi-2 fraktometer mit ΜοΚα-Strahlung (Graphit-Monochromator) bei Drehung um die Zone [010] im ω -scan bis $\sin \theta / \lambda = 0.75 \text{ Å}^{-1}$ gesammelt. Korrekturen erfolgten für die Absorption gemäß der Kristallgestalt [linearer Absorptionskoeffizient $\mu(MoK\alpha) = 100,3 \text{ cm}^{-1}$], sowie für die Lorentz- und Polarisationseffekte [Programm SHEL-X (4)]. Durch Mittelung über identische und symmetrisch äquivalente Reflexe wurde ein Datensatz von 2214 Reflexen erhalten, wovon 1834 mit $F_0 >$ $6\sigma(F_0)$ als beobachtet gewertet und für die Strukturuntersuchung herangezogen wurden.

Die Bestimmung der Positionen der Atome Cu und P gelang mit direkten Methoden (4), eine anschließend gerechnete Fouriersummation zeigte die Lagen sämtlicher O-Atome. Die Verfeinerung der Strukturparameter konvergierte nach wenigen Zyklen [Programm SFLS-5 (5)]. Die H-Atome konnten mit Hilfe einer Differenzkristallchemisch fouriersummation an plausiblen Positionen lokalisiert werden. Ihre Ortsparameter und ihr isotroper Temperaturparameter wurden ebenfalls nach der Methode der kleinsten Ouadrate bei voller Matrix verfeinert. Die Streukurven für neutrale Atome sowie die Werte $\Delta f'$ und $\Delta f''$ wurden (6) entnommen. Die Berücksichtigung der sekundären Extinktion (7) ergab den größten Korrekturfaktor für den Reflex (600): $F'_{c} = F_{c} \cdot 0.85$.

Für die 1834 als beobachtet gewerteten Reflexe konnte ein *R*-Wert von 0,033 erzielt werden; unter Einbeziehung der 380 Reflexe mit $F_0 \le 6\sigma(F_0)$ beträgt R = 0,044. Die Strukturparameter sind in Tabelle I ange-

TABELLE II

Pulverdiagramm für $Cu_3(PO_4)_2 \cdot H_2O$ (Debye-Scherrer Geometrie, $CuK\alpha\text{-}Strahlung)^a$

Ibeob	Iber	dhki	1	k	h	Ibeob	Iber	d _{hkl}	1	k	h
	5	2,229	4	1	3	50	50	8,70	0	0	2
20	17)	2,175	0	0	8		7	5,91	2	0	0
20	4 ∫	2,167	1	1	7	30	25	5,84	0	1	1
	7	2,139	4	2	0	50	44	5,63	-2	0	2
	4	2,126	5	1	1		2	5,06	1	1	1
	2	2,118	0	2	6	10	14	4,35	-2	1	1
	6	2,118	-5	1	5	10	17)	4,26	-1	1	3
	3	2,052	0	3	1	10	7∫	4,24	0	l	3
	27)	2,042	-6	0	2	70	47	3,98	2	l	1
30	13	2,033	- 1	3	1	10	17	3,81	-2	1	3
	2	2,028	-4	0	8		3	3,76	1	1	3
	5	2,006	-6	0	4	50	35	3,41	-3	1	1
	2]	1,991	3	2	4	20	28	3,21	3	1	3
10	4	1,990	4	2	2		26)	3,14	3	ı	1
	12	1,990	2	1	7	50	35	3,13	2	0	4
	4	1,958	-2	3	1		5	3.12	-1	1	5
	11	1,949	-1	3	3		2	3,06	-4	0	2
10	19	1,923	-5	2	2		11	3.04	0	1	5
	4	1,908	4	1	5	90	100	2,96	4	0	0
	4	1,900	-2	3	3		22]	2.92	0	2	2
	6	1.886	2	0	8	100	95	2.90	0	0	6
	2	1.878	-6	0	6		68	2.90	-1	2	2
	4	1.861	-6	1	5		91	2.79	1	1	5
	5	1.840	4	0	6	10	14	2.78	1	2	2
	3	1.820	-1	2	8		2	2.75	2	2	0
	4	1.818	-2	2	8		4	2.74	-4	1	1
	7	1.806	3	1	7		2	2.73	-3	1	5
	3	1.802	2	3	3		7	2.72	-2	2	2
	3	1.797	3	3	1	10	31	2.68	-4	1	3
	4)	1.781	0	2	8		5	2.64	3	1	3
10	7	1 774	-3	2	8		3	2 60	4	0	2
	3	1 756	-5	2	6		197	2.55	-1	2	4
	ร์เ	1 731	3	2	6		4	2 55	4	ĩ	1
10	14	1 723	1	3	Š	20	11	2 53	2	2	2
	5	1 702	6	0	8		3	2 53	ō	2	4
	7	1,697	-4	3	3		51	2,55	-2	2	4
	4	1 684	-6	2	4	30	26	2 45	-3	2	,
	5	1 662	-7	ĩ	i		18)	2 42		õ	6
	4	1.661	4	3	i	30	7	2 42	-4	ĩ	ŝ
	4)	1.646	-7	1	ŝ	50	28	2 40	i	2	4
10	12	1 639	6	0	4		31	2 38	-1	ĩ	7
	2	1.623	-4	3	5	10	18	2.36	-2	1	7
	5	1.611	,	2	8		3)	2.25	3	2	2
	4	1.607	5	2	4	20	101	2.25	-3	1	7
	7	1.605	-2	3	7	20	10	2.24	-2	0	8
				_			,			~	
				_						_	_

^{*a*} Die berechneten Intensitäten werden nur mit $I_{\text{ber}} \ge 2$ und $d_{hkl} \ge 1.600$ Å angeführt.

führt; Tabelle II enthält ein theoretisches Pulverdiagramm, Tabelle III interatomare Abstände und Bindungswinkel.

Ergebnisse

Die drei kristallographisch verschiedenen Cu-Atome im $Cu_3(PO_4)_2 \cdot H_2O$

	·····			
Variationalistation		T ince to a	Winkel am	A1 . 1
Koordinationspolyeder	\$	Liganden	Zentralatom	Abstand
Cu(1) - O(14) = 1,972	0,44	O(14), O(13)	89,9	2,789
Cu(1) - O(13) = 1,976	0,43	O(14), O(11)	92,4	2,857
Cu(1) - O(11) = 1,986	0,42	O(14), O(11)'	154,6	3,862
Cu(1) - O(11)' = 1,988	0,42	O(13), O(11)	159,9	3,901
Cu(1) - O(21) = 2,436	0,12	O(13), O(11)'	104,5	3,133
Cu(1)-O(24) = 2,504	0,10	O(11), O(11)'	81,2	2,587"
	$\Sigma = 1,93$			
Cu(2) - O(23) = 1,922	0,51	O(23), O(12)	88,0	2,702
Cu(2) - O(12) = 1,966	0,45	O(23), O(13)	172,5	3,918
Cu(2) - O(13) = 2,005	0,40	O(23), O(22)	94,2	2,905
Cu(2) - O(22) = 2,042	0,35	O(12), O(13)	89,1	2.787
Cu(2) - O(24) = 2,298	0,17	O(12), O(22)	144,5	3,817
Cu(2) - O(21) = 2,848	0,05	O(13), O(22)	92,1	2,914
	$\Sigma = 1.93$			
Cu(3) - O(21) = 1,929	0,50	O(21), O(22)	166,1	3,846
Cu(3) - O(22) = 1,945	0,47	O(21), O(14)	84,2	2,636
Cu(3) - O(14) = 2,002	0,40	O(21), Ow	93,8	2,882
Cu(3) - Ow = 2,018	0,38	O(22), O(14)	89,5	2,779
Cu(3)-Ow' = 2,641	0,08	O(22), Ow	94,1	2,902
Cu(3) - O(12) = 3,101	0,03	O(14), Ow	171,8	4,009
	$\Sigma = 1,86$			
P(1) - O(12) = 1,524	1,31	O(12), O(11)	109,9	2,511
P(1)-O(11) = 1,544	1,24	O(12), O(13)	113,1	2,575
P(1)-O(13) = 1,562	1,18	O(12), O(14)	111,4	2,553
P(1)-O(14) = 1,566	1,16	O(11), O(13)	107,7	2,509
	$\overline{\Sigma - 4.89}$	O(11), O(14)	109,0	2,531
	2 - 4,07	O(13), O(14)	105,7	2,493
P(2)-O(24) = 1,529	1,29	O(24), O(21)	112,4	2,560
P(2)-O(21) = 1,552	1,21	O(24), O(23)	109,9	2,525
P(2)-O(23) = 1,555	1,20	O(24), O(22)	110,8	2,552
P(2)-O(22) = 1,571	1,15	O(21), O(23)	107,8	2,511
	$\overline{\Sigma} = 4.85$	O(21), O(22)	105,5	2,486
	,	O(23), O(22)	110,3	2,566

TABELLE III

Interatomare abstände (Å) und Bindungswinkel (°) im $Cu_3(PO_4)_7 \cdot H_2O_5$

Anmerkung. Die durchschnittlichen Standardabweichungen der Cu–O- und P–O-Bindungslängen betragen 0,003 Å, die der O–O-Abstände 0,005 Å sowie der Bindungswinkel $0,2^{\circ}$. Die Bindungsstärken *s* wurden nach (13) berechnet.

^a Gemeinsame O-O-Kante zweier "Cu(1)O₄-Quadrate."

sind jeweils von vier O-Atomen etwa planar quadratisch umgeben (im weiteren als "[CuO₄]-Quadrate" bezeichnet). Die mittleren Cu(1)-O- und Cu(2)-O-Bindungslängen sind mit 1,981 und 1,984 Å innerhalb des Fehlers gleich lang, die des Cu(3)-Atoms sind hingegen nur 1,974 Å. Wie aus Abb. 1 ersichtlich, sind die Abstände von den Atomen Cu(1), Cu(2) und Cu(3) zu den nächst weiter entfernten O-Atomen sehr unterschiedlich.

Die Koordinationsfiguren der Atome Cu(1) und Cu(2) werden nur durch Sauerstoffatome von [PO₄]-Gruppen gebildet.

ABB. 1. Die Koordination der drei kristallographisch verschiedenen Cu-Atome im $Cu_3(PO_4)_2 \cdot H_2O$ (Abstände in Å).

Das Cu(1)-Atom besitzt eine [4 + 2]-Koordination in Form eines verzerrten Oktaeders. Die Cu(1)–O-Bindungslängen zu den beiden nicht zum [CuO₄]-Quadrat gehörenden O-Atomen sind um 22,5% bzw. um 26,0% länger als zu denen des [CuO₄]-Quadrates. Das Cu(2)-Atom hat eine [4 + 1]-Koordination, wobei der Abstand zum fünften O-Atom [O(24)] nur um 12,5%länger ist, als jener zu den O-Atomen des $[Cu(2)O_4]$ -Quadrates. Das Cu(2)-Atom selbst ist in Richtung dieses O(24)-Atomes aus der "mittleren Ebene" der vier nächsten O-Atom Nachbarn verschoben, sodaß ein tetragonal pyramidales Koordinationspolyeder entsteht. Ein sechstes O-Atom folgt erst in einem Abstand von 2,848 Å und wird daher nicht mehr zur Koordination des Cu(2)-Atomes gezählt.

Das $[Cu(3)O_4]$ -Quadrat wird aus drei Sauerstoffatomen von Phosphatgruppen sowie einem O_w-Atom gebildet, wobei Cu(3)–O_w der längste der Cu–O-Abstände dieses Quadrates ist (vgl. Abb. 1). Ein fünftes O-Atom (ebenfalls O_w) weist einen bereits um 30,9% längeren Abstand zum Cu(3)-Atom auf. Da auch der mittlere Cu– O-Abstand innerhalb der [CuO₄]-Quadrate in dieser Verbindung für das Cu(3)-Atom am kürzesten ist, scheint die Beschreibung des Cu(3)-Atoms als [4]-koordiniert gerechtferigt.

Zusammenfassend können in der hier vorliegenden Verbindung $Cu_3(PO_4)_2 \cdot H_2O$

die Koordinationen um die Cu(II)-Atome wie folgt beschrieben werden: $[Cu(1)^{[4+2]}O_6]$ -Oktaeder, $[Cu(2)^{[4+1]}O_5]$ tetragonale Pyramide und $[Cu(3)^{[4]}O_4]$ -Quadrat. Diese Koordinationen entsprechen der allgemeinen kristallchemischen Erfahrung (vgl. (8–10)).

Die so beschriebenen Cu-Koordinationsfiguren werden zu einem zweidimensionalen schichtartigen Verband parallel (100) verknüpft (Abb. 2). Dies erfolgt einerseits eine über gemeinsame O-Atom-Ecke [O(22): Atome Cu(2) und Cu(3)], andererseits über gemeinsame O-O-Kanten [O(11)-O(11): zwei Cu(1)-Atome, O(13)-O(24): Cu(1)- und Cu(2)-Atom, O(14)-O(21): Cu(1)- und Cu(3)-Atom]. Dazu sei bemerkt, daß nur eine der gemeinsamen O-O-Kanten zwei [CuO₄]-Ouadrate verknüpft: Diese O(11)-O(11)-Kante von 2,587 Å und der entsprechende O(11)-Cu(1)-O(11)-Bindungswinkel von 81,2° ist die kürzeste O-O-Kante sowie der kleinste

ABB. 2. Projektion eines Ausschnitts der Kristallstruktur von $Cu_3(PO_4)_2 \cdot H_2O$ senkrecht auf (100). Dargestellt sind nur die Cu-Atome mit $0,0 \le x \le 0.5$ und deren Koordination; dies entspricht einem der schichtartigen Cu-Verbände.

ABB. 3. Projektion eines Ausschnitts der Kristallstruktur von $Cu_3(PO_4)_2 \cdot H_2O$ entsprechend Abb. 1, jedoch mit der Ergänzung sämtlicher Cu-Koordinationspolyeder zu (z.T. stark verzerrten) Oktaedern. Die Numerierung der "Oktaeder" entspricht der für die Atome Cu(1), Cu(2), und Cu(3).

O-Cu-O-Winkel der drei im $Cu_3(PO_4)_2$. H₂O auftretenden [CuO₄]-Quadrate. Werden hingegen für alle drei Cu-Atome die sechs nächstgelegenen O-Atome berücksichtigt und die entstehenden Koordinationsfiguren formal als (zum Teil sehr stark) verzerrte Oktaeder beschrieben, ergibt sich topologisch ein dreidimensinaler Oktaederverband (Abb. 3).

Die mittleren P(1)–O- bzw. P(2)–O-Bindungslängen sind mit 1,549 Å bzw. 1,552 Å innerhalb des Fehlers gleich lang und entsprechen den in gut belegten Kristallstrukturen ermittelten Werten (vgl. (11, 12)). Die Unterschiede in den einzelnen P–O-Abständen sind mit den jeweiligen Koordinationen der O-Atome korrelierbar (siehe Tabelle IV). Die [P(1)O₄]-Tetraeder liegen innerhalb eines Cu-Schichtverbandes, die [P(2)O₄]-Tetraeder verknüpfen jeweils zwei dieser Schichtverbände zu einem dreidimensionalen Gerüstverband. Eine Projektion der Atomanordnung parallel [010] ist in Abb. 4 gegeben.

Die Ortsparameter der beiden Wasserstoffatome des nur an ein Cu(3)-Atom gebundenen H₂O-Moleküles konnten röntgenographisch belegt werden und damit auch ein Modell für die Wasserstoffbrückenbindungen. Als Akzeptoratome fungieren O(23) und O(24); diese beiden

ABB. 4. Projection der Kristallstruktur von $Cu_3(PO_4)_2 \cdot H_2O$ parallel [010]. Die Wasserstoffbrückenbindungen sind gepunktet dargestellt.

Koordination der Sauerstoffatome	S	Liganden	Winkel am Sauerstoffatom
$\begin{array}{l} O(11)-Cu(1) &= 1,986 \\ O(11)-Cu(1)' &= 1,988 \\ O(11)-P(1) &= 1,544 \end{array}$	$ \begin{array}{r} 0,42 \\ 0,42 \\ \frac{1,24}{\Sigma = 2,08} \end{array} $	Cu(1), Cu(1)' Cu(1), P(1) Cu(1)', P(1)	98,8 124,8 135,6
O(12)-Cu(2) = 1.966 O(12)-Cu(3) = 3.101 O(12)-P(1) = 1.524	$0,45 \\ 0,03 \\ 1,31 \\ \overline{\Sigma = 1,79}$	Cu(2), P(1)	130,1
O(13)-Cu(1) = 1,976 O(13)-Cu(2) = 2,005 O(13)-P(1) = 1,562	$0,43 \\ 0,40 \\ 1,18 \\ \overline{\Sigma} = 2,01$	Cu(1), Cu(2) Cu(1), P(1) Cu(2), P(1)	106,1 132,2 121,6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$0,44 \\ 0,40 \\ 1,16 \\ \overline{\Sigma} = 2,00$	Cu(1), Cu(3) Cu(1), P(1) Cu(3), P(1)	108,5 119,3 128,6
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$0,50 \\ 0,12 \\ 0,05 \\ 1.21 \\ \Sigma = 1,88$	Cu(3), Cu(1) Cu(3), P(2) Cu(1), P(2)	94,6 135,0 122,5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$0,47 \\ 0,35 \\ 1,15 \\ \Sigma = 1,97$	Cu(3), Cu(2) Cu(3), P(2) Cu(2), P(2)	119,4 110,4 112,9
O(23)-Cu(2) = 1,922 O(23)-P(2) = 1,555 $O(23) \dots H(1) = 1,82$	0.51 1.20 $\overline{\Sigma = 1.71}$	Cu(2), P(2) Cu(2), H(1) P(2), H(1)	138,8 110 106
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$0,17 \\ 0,10 \\ 1,29 \\ \overline{\Sigma = 1,56}$	Cu(2), Cu(1) Cu(2), P(2) Cu(2), H(2) Cu(1), P(2) Cu(1), H(2) P(2), H(2)	82,9 151,9 81 116,7 129 99
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0,38 0,08	Cu(3), H(1) Cu(3), H(2) H(1), H(2) O(24), O(23)	103 115 110 117,2

TABELLE IV Koordination der Sauerstoffatome im $Cu_3(PO_4)_2 \cdot H_2O^{\alpha}$

^{*a*} Abstände in Å, Winkel in (°). Standardabweichungen für O-Cu und O-P: 0,003 Å, für O-O: 0,005 Å, für O-H: 0,07 Å sowie für die Winkel 0,2° (ist ein H-Atom Ligand: 5°). Bindungsstärken s der O-Cu- und O-P-Bindungen nach (13).

Atome weisen eine deutlich geringere Summe der nach (13) berechneten Cu-Ound P-O-Bindungsstärken auf-verglichen mit denen der restlichen O-Atome der Phosphatgruppen (vgl. Tabelle IV). Weiterhin sind die Abstände $O_w - O(23) =$ 2,792 Å bzw. O_w -O(24) = 2,626 Å die kürzesten der O_w-O-Abstände, die nicht gleichzeitig O-O-Kanten in einem der Koordinationspolyeder sind. Eine der Wasserstoffbrückenbindungen liegt innerhalb des Cu-Schichtverbandes, die zweite verknüpft jeweils zwei dieser Schichtverbände.

Zum Vergleich von $Cu_3(PO_4)_2$ und $Cu_3(PO_4)_2 \cdot H_2O$: in der Atomanordnung des $Cu_3(PO_4)_2$ gibt es zwei kristallographisch verschiedene Cu-Atome, wobei bereits die $[Cu(1)^{[4]}O_4]$ - und $[Cu(2)^{[4+1]}O_5]$ -Koordinationspolyeder einen dreidimensionalen Gerüstverband bilden. In diesem besitzen zwei Drittel der Cu-Atome gemeinsame O-O-Kanten zwischen "[CuO4]-Quadraten" aus, während die weitere Verknüpfung über O-Atom-Ecken erfolgt. Durch den Einbau des H2O-Moleküls in der hier beschriebenen Verbindung wird gleichsam der Cu₃(PO₄)₂-Verband aufgeweitet und nur ein Drittel der Cu-Atome besitzt eine gemeinsame O-O-Kante zwischen jeweils zwei "[CuO₄]-Quadraten". Dies wirkt sich auf die (röntgenographische) Dichte aus, die im $Cu_3(PO_4)_2 \cdot H_2O$ bereits um 12,6% geringer ist als im $Cu_3(PO_4)_2$.

Dank

Herrn Professor Dr. J. Zemann danke ich für sein stetes Interesse am Fortgang dieser Arbeit. Die Synthesen wurden aus Mittein der "Hochschuljubiläumsstiftung der Stadt Wien" unterstützt, Rechenzeit stellte das "Interuniversitäre Rechenzentrum Wien" zur Verfügung.

Referenzen

- 1. H. EFFENBERGER, Z. Kristallogr., im Druck (1984).
- "Gmelins Handbuch der Anorganischen Chemie," Nr. 60, Verlag Chemie GmbH, Weinheim/ Bergstraße (1961).
- 3. G. L. SHOEMAKER, J. B. ANDERSON, AND E. KOS-TINER, Acta Crystallogr. Sect. B 33, 2969 (1977).
- G. M. SHELDRICK, "SHELX-76. Programme für die Strukturbestimmung," University of Cambridge, England (1976).
- C. T. PREWITT, "SFLS-5. Structure Factor Least-Squares Program," (unveröffentlicht) (1966).
- 6. "International Tables for X-Ray Crystallography," Vol. IV, The Kynoch Press, Birmingham, England (1974).
- 7. W. H. ZACHARIASEN, Acta Crystallogr. 23, 558 (1967).
- A. F. WELLS, "Structural Inorganic Chemistry," Oxford Univ. Press (Clarendon), London/New York (1984).
- 9. J. ZEMANN, Fortschr. Mineral. 39, 59 (1961).
- J. ZEMANN, "Handbook of Geochemistry," Vol. H-3, pp. 29-A, Springer-Verlag, Berlin/Heidelberg/New York (1972).
- 11. D. E. C. CORBRIDGE, Bull. Soc. Minér. Cristallogr. 94, 271 (1971).
- F. LIEBAU, "Handbook of Geochemistry," Vol. II-2, pp. 15-A, Springer-Verlag, Berlin/Heidelberg/New York (1972).
- I. D. BROWN AND K. K. WU, Acta Crystallogr. Sect. B 32, 1957 (1976).